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We investigate at the atomic scale the crystallization of a two-phase amorphous-crystalline system. We focus
on the case of textured nanocrystalline silicon here described as a distribution of cylindrical grains embedded
into an amorphous matrix. The atomistic results are used to infer a continuum model of the crystallinity
evolution and to work out a comparison with Kolmogorov-Johnson-Mehl-Avrami �KJMA� model. At low
crystallinity, the phase transformation is dominated by the isolated grain evolution �faceted limited growth�.
Conversely, at later stages we observe deviations from the KJMA that are mainly due to atomic-scale features.
We prove that such effects can be included by using an improved phenomenological version of the KJMA
theory.
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I. INTRODUCTION

Mixed-phase amorphous-crystalline �a-c� systems are
both of technological and theoretical relevance.1 In particu-
lar, this is the case of nanocrystalline �NC� materials,2 where
a distribution of nanosized crystal grains is embedded into an
amorphous matrix. NC systems are useful for advanced
optoelectronics,3 structural engineering,4–6 and many other
technological applications.2 Remarkably, NC-silicon films3

are promising systems for low cost photovoltaics since, by
controlling the dimension of their grains, it is possible to
optimize the absorption coefficient and to improve the pho-
toconversion efficiency. As for structural applications, we
mention the case of nanodiamond carbon,6 which consists of
diamond grains dispersed into an otherwise amorphous car-
bon film. Such systems are used as ultrahard coatings since
the nanosized diamonds are able to largely modify the me-
chanical response, increasing the fracture toughness of the
material �particle reinforcing�.5

NC systems are in most cases thermodynamically meta-
stable. Since the free energy is larger in the amorphous phase
than in the corresponding crystalline one �as occurs, for ex-
ample, for silicon and carbon�, a-c systems tend to
crystallize.7 It is possible to take advantage of this property
in order to synthesize new materials by solid phase
crystallization;1 by high-temperature annealing of an amor-
phous matrix it is observed the nucleation of crystal seeds
and their further growth.1,7–10 On the other hand, the same
metastability may induce an uncontrolled microstructure
evolution that can, in turn, deteriorate the properties of the
system. Therefore, a comprehensive physical understanding
and theoretical modeling of the microstructure evolution of
a-c biphasic systems is mostly needed and useful for tech-
nological impact.

The phase transformation kinetics of a-c materials is tra-
ditionally described by the well celebrated Kolmogorov-
Johnson-Mehl-Avrami �KJMA� theory.11–14 A first-order
phase transformation �e.g., the crystallization from the amor-
phous phase� is described in terms of two phenomena,
namely, �i� the random nucleation of new stable grains within
the metastable amorphous phase and �ii� the growth of the

nucleated grains. In particular, the KJMA theory provides the
fraction of transformed material as a function of time �see
Sec. IV�. Both the nucleation and growth phenomena are
controlled by atomic-scale events. In order to include them
into the mesoscopic KJMA theory, two effective laws are
required:15 the time evolution ��t� of the isolated grain vol-
ume and the number of new grains nucleating during a unit
of time, i.e., the nucleation rate J�t�. Both functions ��t� and
J�t� depend on the actual thermodynamic conditions and on
the microscopic morphological details of the metastable
phase �e.g., the presence of defects and inhomogeneities or
local strain�, as well as on the growth mechanisms. In gen-
eral, they are unknown a priori. It is customary to describe
��t� and J�t� in terms of adjustable parameters that are typi-
cally fitted on the experimental data.16 This procedure is very
successful in describing the kinetics of first-order phase
transformations. Nevertheless, deviations are sometimes ob-
served like in metals17 or in silicon.1 The validity of the
KJMA theory has been extensively discussed in the
literature.15,18 As a matter of fact, the KJMA formulation is
strictly valid when the following three conditions are
fulfilled:15,18 �i� the nucleation of new crystalline grains oc-
curs everywhere with the same probability �random and uni-
form nucleation�; �ii� the growth of each grain is isotropic
and it is not affected by the presence of neighboring grains
�isolated growth�; and �iii� the volume of an arbitrary grain is
much smaller than the total volume of the system.19

In many cases of interest the fulfillment of these condi-
tions is questionable17,20–23 and, therefore, the KJMA theory
has been critically readdressed, as briefly outlined in the
following.17,18 Most investigations have focused on the de-
viations from condition �i�, considering, e.g., a position-
dependent nucleation.22 By using lattice Monte Carlo simu-
lations, it has been possible to investigate several
nonuniform nucleation phenomena occurring when micro-
scopic inhomogeneities are present,20 when the nucleation
rate is modified in the regions around the growing grains,22

or, finally, when the nucleation depends on the untrans-
formed fraction �e.g., during soft impingement of grains due
to diffusion controlled growth23�. On the other hand, devia-
tions from the independent and isotropic grain growth �con-
dition �ii�� are expected to be important in covalently �i.e.,
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anisotropic� bonded materials. It has been proved that the
KJMA theory is still valid when the growth is nonisotropic,
provided that the grains are parallel.18,22 Nevertheless, the
validity of the KJMA theory in covalent systems is still a
matter of discussion. Alternative kinetic models have been
preferred to study crystallization in silicon.1

The main difficulty in proving the ability of the KJMA
theory to reproduce the experimental data is that, in most
cases, the nucleation and growth occur at the same time, so
that the two phenomena are entangled.16 Interesting enough,
this is not the case of the site-saturated crystallization.16 Here
the nucleation does not occur but for a very short-time tran-
sient �hereafter referred to as the nucleation time tN� during
which all the grains nucleate in the amorphous phase. At
t� tN, the crystallization is fully controlled by the grain
growth only. Accordingly, the site-saturated regime is par-
ticularly favorable to verify the reliability of the KJMA
theory to describe crystallization driven by a realistic model
of grain growth.

Whatever modification is applied to the KJMA theory to
improve its validity, the truly atomic-scale description of the
underlying physical phenomena �nucleation and growth� re-
mains out of reach of this continuum model. In order to
bypass this conceptual limitation, we performed a molecular-
dynamics �MD� investigation on the crystallization of a sili-
con amorphous system under the condition of site saturation
�i.e., in absence of nucleation�. Atomistic simulations have
already been successfully applied to study the kinetics of
growth of an isolated cylindrical grain embedded into amor-
phous silicon.7 The present work is aimed at extending our
previous investigations to the case of a distribution of grains.
After a detailed description of the growth of an isolated grain
�Sec. III�, we consider the case of an amorphous sample
containing a finite number of grains �see Sec. IV�. By simu-
lating at the atomic scale the crystallization, we are able to
naturally include effects which are not covered by the con-
stitutive hypothesis of KJMA theory �such as the anisotropic
growth of silicon grains7 and their mutual interaction�. The
atomistic results �discrete in nature� are coarse grained into a
mesoscopic model �in the spirit of a phase field model� so as
to calculate the deviations from the ideal KJMA theory
�Sec. IV� in the realistic crystallization process.

II. LARGE SCALE ATOMISTIC SIMULATIONS OF THE
CRYSTALLIZATION KINETICS

We performed constant-temperature constant-volume
simulations on a periodically repeated simulation cell, con-
taining an isolated or a distribution of c-Si grain�s� embed-
ded into a-Si. The orthogonal cell has dimensions
Lx=2.5 nm, Ly =25 nm, and Lz=25 nm �along x ,y ,z direc-
tions, respectively�.

The atomic forces were calculated according to the envi-
ronment dependent interatomic potential �EDIP�,24 recently
applied to study a-c systems.25 The simulation cell contains
�105 atoms. The temperature of the system was kept fixed
by a rescaling velocity thermostat.

The microstructure evolution of the biphasic system �see
Fig. 1� was characterized by the average structure factor �SF�

��k�,26,27 the k vector �
a0

4 ,0 ,0� corresponding to the interpla-
nar distance of c-Si along the x direction. The average SF
was calculated by first dividing the system into subcells, then
by calculating the local structure factor within each subcell,
and, finally, by taking the average over all the subcells. Each
box was chosen to contain at least several hundreds of atoms.
The average structure factor represents an average between
the crystalline ��c� and the amorphous ��a� values,
weighted by their relative abundance ��c and �a, respec-
tively�,

��T,t� = ��T,t��c�T� + �1 − ��T,t���a�T� . �1�

In Eq. �1�, we set �a=1−��T , t� since for the two-phase a-c
system we expect �a+�c=1. The crystallinity fraction is
straightforwardly computed by Eq. �1�,

��T,t� = ���T,t� − �a���c�T� − �a�−1. �2�

It is important to note that the structure factor �c�T� is a
decreasing function of the temperature �as a result of the
lattice disorder induced by thermal fluctuations�. The fit of
present MD data provides a linear dependence of the crys-
tallinity upon temperature

�c�T� = 1 − 1.71 � 10−4T �3�

for any T�Tmc. Tmc is the EDIP melting temperature of c-Si
�see Appendix�. On the other hand, we found a constant
�a�T��0.1 for any value of T.

In order to validate the above theoretical framework, the
crystallinity ��T , t� was also calculated by a topological
analysis of the bond ring statistics �RS�.28 We assumed that

y
x

z

FIG. 1. �Color online� Snapshots of the NC-Si /a-Si crystalliza-
tion process at 1200 K �y-z planar projection� after 0.5 ns �top�, 1.5
ns �middle�, and 2.0 ns �bottom�.
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two atoms are connected if their relative distance is smaller
than 2.5 Å. Accordingly, in the perfect diamond structure �at
zero temperature� only six-member rings are found and,
moreover, on each lattice site 12 different rings merge.
Therefore an atom is attributed to the crystalline phase
if the number of six-member rings there merging is
exactly 12. At finite temperature, as a result of the thermal
vibrations, the number of six-member rings merging on an
atomic site decreases and rings of different sizes form with a
probability distribution that depends on temperature. We
attributed an atom of a biphasic system to the crystalline
phase if the number of rings is compatible with the same
distribution of rings in a monocrystalline sample at the cor-
responding temperature. Roughly speaking, in the range
1000 K�T�1200 K, an atom is crystalline when the num-
ber of six-member rings is greater than eight. Such a choice
was validated by an analysis of the atomic positions. It is
proved that both criteria �based, respectively, on the notion
of structure factor and on ring statistics� provide very similar
estimations of ��t ,T�.

The atomistic models of nanocrystalline silicon were ob-
tained by inserting a fixed number N of cylindrical grains
�fibers� into the amorphous slab. The fibers were cut away
from a perfect silicon crystal in such a way that their �100�
crystallographic direction is parallel and aligned along the x
direction of the simulation cell �see Fig. 1�. Each fiber was
then randomly rotated around x to mimic the casual nucle-
ation of grains. We considered two cases: N=1 and N=20. In
the first case, the radius �0 of the grain was chosen equal to
0.3 nm. In the case of a distribution of grains, the radii �0

i

�i=1, . . . ,N� were chosen according to the following proce-
dure: �i� N points are selected at random within a y-z plane of
the simulation cell; �ii� the minimum distance dmin between
points is calculated; and �iii� the radii are generated at ran-
dom within the range ��min,�max=dmin /2�0.4�. �min was
chosen to be larger than the capillarity threshold R�, namely,
the minimum radius for which an embedded grain is thermo-
dynamically stable during a thermal annealing. According to
the classical nucleation growth theory �see Sec. III�, the free
energy of a crystal grain with radius smaller than R� is domi-
nated by the surface contribution. Therefore, during a ther-
mal annealing it is expected to shrink and to melt into the
amorphous phase. Since R� depends on the actual tempera-
ture, we used the largest value in the range of temperature
considered. It will be shown in Sec. III that 0.2 nm�R�

�0.5 nm so that we set �min=0.5 nm. By following the
above procedure the initial grains have different sizes �and
orientations� and they do not touch each other. Furthermore,
since �0

i ��min�R�, they are stable and they grow during the
applied thermal annealing. This corresponds to the site-
saturated crystallization condition.

The systems generated according to the above protocol
were equilibrated by �0.3 ns at the temperature of interest.
During this time the grains transform from the ideal cylin-
drical shape to a different morphology that is thermodynami-
cally favorite. The radii of the grains just after the thermali-
zation are referred to as R0

i , i=1, . . . ,N. They depend on
temperature R0

i =R0
i �T���0

i , i=1, . . . ,N. In the case N=1 the
radius is referred to as R0�T�. The crystallization phenomena
were studied during further annealing. In the case of the

isolated grain, the effective radius was calculated from the
crystallinity � through the relation R= �

Ayz

� ��1/2, where Ayz
=LyLz is the lateral area of the simulation cell.

III. ISOLATED GRAIN GROWTH KINETICS

Without nucleation, the crystallization of mixed
amorphous-crystalline systems is the result of the grain
growth or, that is the same, of the a-c boundary mobility.
This occurs since the free energy of the amorphous phase is
larger than the crystalline one. If we name ga and gc the free
energy per unit volume of the amorphous and crystalline
phases, respectively, we get gac=ga−gc�0. It is possible to
define a thermodynamic pressure p acting on an a-c bound-
ary of area S as

p = −
dG

dV
, �4�

where dG is the free-energy change associated to an infini-
tesimal displacement dR of the a-c boundary and dV=SdR is
the transformed volume �if p�0 the free energy decreases�.
The work dG necessary to crystallize a volume dV is

dG = − gacdV + 	acdS , �5�

where dS is the corresponding variation of the a-c area and
	ac is the interface energy per unit of a-c area. According to
Eq. �5�, we get

p = gac − 	ac
dS

dV
. �6�

In the case of a planar boundary, dS /dV=0 and p=gac. In the
case of an isolated cylindrical �D=2� or spherical �D=3�
grain the surface-to-volume ratio dS /dV= �D−1� /R depends
on the radius R. In the cylindrical case the pressure is there-
fore given by

p�R� = gac�1 −
R�

R
� . �7�

At the capillarity threshold, we get R�= �D−1�	ac /gac
and p�R��=0. R� is easily computed in the case of
silicon: since1 	ac= �0.1–0.3� eV /Sat and gac�0.1 eV /Vat,
where Sat is the a-c area per atom, we obtain
R�= �1–3�Vat /Sat=0.1–0.4 nm, where Vat /Sat=a0 /4 and a0
being the c-Si lattice parameter.

The simplest kinetic model for crystallization is the inter-
face limited growth �ILG� model, describing the crystalliza-
tion process as a sequence of uncorrelated transformations
�occurring at the interface� from amorphouslike atoms to
crystal-like ones. Each event requires the bypass of a given
energy barrier Eb. Accordingly, the interface velocity v turns
out to be a function of the pressure p,

v = M
−1�1 − e−p
� , �8�

where 
=Vat / �kBT�, Vat is the atomic volume, and kB is the
Boltzmann constant. M =�e−Eb/kBT / �kBT� is the a-c mobility
and � is a prefactor related to the material. The exponential
dependence of M upon the temperature has been experimen-
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tally verified only in the case of planar a-c interfaces.29 No-
tably, at high temperature p�1 /
 and the velocity is simply
proportional to the pressure,

v = Mp . �9�

Under this condition R�t� is obtained by solving

dR

dt
= Mgac�1 −

R�

R
� . �10�

The relation between the radius and time is t

= �Mgac /R��−1� R
R� −

R0

R� +ln�� R
R� −1� / �

R0

R� −1��	 providing linear
growth R�R0+Mgact at large radii. In fact, for R�R� Eq.
�10� is approximated by a constant velocity,

v�R� � Mgac. �11�

By studying cylindrical a-c boundaries in silicon,7 we
have recently proved that deviations from the ILG model are
possible. Such deviations are observed when the microscopic
crystallization events are correlated. This is the case of fac-
eted grain growth that we proposed7 to describe by a power-
law growth �PLG� model. Here the mobility M is replaced by
an effective radius-dependent a-c mobility M� �

R �1/q−1 and q
is an exponent possibly depending on temperature. The cor-
responding velocity is calculated to be

v�R� � M��

R
�1/q−1

gac�1 −
R�

R
� . �12�

When R
R� we get

v�R� � Mgac��

R
�1/q−1

�13�

and

dR

dt
= Mgac��

R
�1/q−1

. �14�

By separating the variables r and t,

R1/q−1dR = Mgac�
1/q−1dt , �15�

and by integrating over the time interval �0, t� �during which
the radius grows from R0 up to R� we finally obtain

R�t� = R0
�� �

R0
�1/q

t + 1�q

, �16�

where �=
Mgac

q� . In the limit of a very small crystal seeds �i.e.,
for R0→0� the previous equation reduces to

R�t� = 
tq, �17�

where 
=�q�. The grain volume ��t�=�LxR�t�2 is

��t� = �tp, �18�

where �=�Lx

2 and p=2q for the actual cylindrical case.

By using Eq. �16� it was possible to fit the atomistic data. For
each given temperature we used the set �q ,� ,R0 ,�	 as ad-
justable parameters and we found that they are temperature
dependent.7 A detailed calculation of this is reported in Ap-
pendix. Here we discuss the variation of q upon temperature

�see Fig. 2�. The exponent q=0.5 �corresponding to the case
of diffusion-limited growth7� is observed in the range of tem-
peratures 0.9�T /Tma�1, just below the EDIP melting tem-
perature Tma of a-Si �see Appendix�. At lower temperatures
the growth exponent is smaller but still positive. Exponents
smaller �larger� than 1 correspond to decelerated �acceler-
ated� growth7 while the case q=1 corresponds to the uniform
growth. A transition from a decelerated regime to a quasiuni-
form one is observed at Tma; we attribute such a change to
the transition of the amorphous network into a liquid, as
predicted by the EDIP model and in agreement with experi-
mental observation.30 This transition is demonstrated by the
observed morphology of the grain boundary changing from a
faceted interface �at low temperature� to a smooth cylindrical
one �at temperatures higher than Tma�.

The result of the fit of Eq. �16� on the atomistic data is
reported in Fig. 3. The calculated function R�t ,T� completely
characterizes the grain growth. For example, the velocity is
easily obtained by calculating the derivative with respect to
the annealing time v�t ,T�= dR

dt �t ,T�. The plot of the normal-
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FIG. 2. Growth exponents as a function of temperature calcu-
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ized v�R ,T� /v�R0 ,T� velocity is reported in Fig. 4. The
curve clearly shows that the growth is decelerated up to T
�Tma, while for T�Tma the growth is uniform or acceler-
ated.

IV. DISTRIBUTION OF GRAINS AND KOLMOGOROV-
JOHNSON-MEHL-AVRAMI THEORY

Let us consider an amorphous matrix of volume Vcell con-
taining N isolated grains of volumes �i, i=1, . . . ,N. Let V�t�
be the volume of the crystalline part of the system �crystal-
line volume�. Until the grains are separated V�t�=�i=1,N�i. At
variance, when the grains are so large to touch each other, it
is useful to introduce the crystalline extended volume Vext�t�
which is defined as the total volume that the same N crystal-
line grains would occupy if they were isolated and they
could grow through each other without mutual interference.
It is useful to normalize V�t� and Vext�t� with respect to the
total volume Vcell, so obtaining the crystallinity ��t� and the
extended crystallinity �ext�t�, respectively. It turns out that
�ext�t����t� since, by definition, the extended crystallinity
double counts the overlap regions. In particular, within the
PLG model it is found that the extended volume increases
arbitrarily with time ��ext�t�→� as t→��, while ��t� is al-
ways smaller than the unity.

Under the assumptions of isotropic growth and spatially
random nucleation21 �see Sec. I�, the KJMA formula,15

��t� = 1 − e�ext�t�, �19�

provides the crystalline fraction as a function of the normal-
ized extended volume. Equation �19� is extensively used
since it makes it possible to bypass the difficult calculation
of the overlap volumes. In order to calculate ��t�, it is there-
fore necessary to calculate �ext�t� that, in turn, is easily ob-
tained by J�t� and ��t� through the relation

Vext�t� = 

0

t

����J�t − ��d� . �20�

At time t=0 the system is supposed to be completely amor-
phous �i.e., Vext�t�=0�. In this work we calculate Eq. �19�
under the assumption of site-saturated crystallization. We
further assume that rate of nucleation J0 is a constant during
the nucleation period �i.e., J0=N / tN�. We get

J�t� = J0�h�t� − h�t − tN�� , �21�

where h�t� is the Heavside step function. By inserting Eq.
�21� into Eq. �20� the following equation is obtained:

Vext = J0
�

p + 1
�tp+1 − �t − tN�p+1h�t − tN�� . �22�

It is possible to distinguish two cases, hereafter named syn-
chronous site-saturated crystallization �SSSC� and asynchro-
nous site-saturated crystallization �ASSC�. The SSSC occurs
when tN is vanishingly small �i.e., when tN / t→0� and
J�t��N��t�. The grains nucleate at t=0 and their growth is
synchronous since each grain will have the same volume ��t�
at any later time t�0. The corresponding SSSC extended
crystalline fraction is

Vext�t� = N�tp. �23�

On the other hand, ASSC is observed when �after the nucle-
ation time� the grains do not have the same size. This occurs
when tN / t�1. Under these conditions, Eq. �22� becomes

Vext = J0
�

p + 1
�tp+1 − �t − tN�p+1� . �24�

During the ASSC the extended volume of each grain lies
within the range ���t− tN� ,��t��. Within the PLG model this
range depends on time ���t− tN�p ,�tp�. Similarly, the radii of
the grains Ri��i

1/2 are not identical and lies within a range

�Rmin,Rmax� = �Rmin,Rmin + �R� , �25�

where �R�t�=maxi�j�Ri�t�−Rj�t��. It is easy to prove that
when t� tN,

0 � �R�t� = 
�tq − �t − tN�q� � 
tN
q . �26�

We remark that �R�t� increases with the nucleation time tN.
Equation �26� is valid also in the limit of SSSC, i.e., when
tN / t→0. In this case, �R→0 since all the grains have the
same dimension.

It is important to note that the KJMA equation makes it
possible to estimate the growth exponent p �or q�. In the
SSSC, the exponent p is obtained by combining Eqs. �19�
and �24�,

p =
1

ln t
ln�− ln�1 − ��t��	 . �27�

We remark that in the case of asynchronous growth, Eq. �27�
is no longer valid since it is necessary to use Eq. �24� instead
of Eq. �23� in order to fit the crystallinity. The parameters p,
tN, and 
 �or �� are outcomes of the fitting procedure.

Present atomistic simulations correspond to the ASSC
since no grain nucleation was observed and �R�0. It is
important to stress that our model of crystallization includes
realistic features indeed present in real experiments; more-
over, such features are beyond the conditions of validity of
the KJMA theory for at least three reasons: �i� first of all, it
takes into account the anisotropic growth of grains7 and the
fact that the grains are randomly oriented; �ii� second, there
are size effects �e.g., the number of grains is finite and their
radii are comparable with the overall volume�; and �iii� the
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grain growth is affected by the presence of neighboring
grains and by their relative crystallographic orientation. Ac-
cordingly, we expect in principle that KJMA cannot fully
reproduce the atomistic data. However, we are going to dem-
onstrate that KJMA is nevertheless able to provide an overall
picture which is not that different from the atomistic one. To
this aim the crystalline fraction ��t� of each system was cal-
culated during a constant-temperature annealing as a func-
tion of the annealing time. The atomistic data were fit by
inserting Eq. �24� for the asynchronous growth into Eq. �19�
and by using tN, 
, and the exponent p as adjustable param-
eters. The results are represented as dashed curves in Fig. 5
and show that the fit works well at small crystallization
times. Furthermore, the actual nucleation time tN can be es-
timated by using the grain-size distribution �R and our
growth model �Eq. �16��; it is easily obtained tN���R�1/q.
We found tN of the order of 1.0 ns.

From the same analysis, we calculated the exponent
q= p /2 and 
 of Eq. �24�. Both quantities are predicted to be
independent of the number N. Actually, as reported in Fig. 2,
the exponents calculated from the distribution of grains turn
out to be quite close to the case of the isolated grain. Since
the exponents control the asymptotic time evolution of the
grains, we conclude that the interaction of the grains affects
the growth exponents although not dramatically.

Concerning the prefactor 
, Fig. 6 shows that it is slightly
smaller in the case of a distribution of grains at temperatures
T�Tma. We attribute such a difference to the interference
between the neighboring grains that makes the growth less
efficient.

The most important deviation from the KJMA theory con-
cerns the asymptotic crystalline ratio. The atomistic values of
crystallinity are, in fact, always smaller than predicted by
KJMA and we found �=0.90, 0.95, and 0.99 at 1100, 1200,
and 1400 K, respectively. At temperatures T�1100 K, the
crystallization is so slow that the average crystallinity is al-
ways below 0.35 at any simulated time. Accordingly, it is
difficult to calculate accurately the asymptotic crystallinity at
such lower temperatures. The incomplete crystallization ob-
served at high temperature is due to the formation of defects

in the final microstructure. As shown in Fig. 1 �bottom
panel�, the final microstructure contains both grain bound-
aries and spotlike amorphous regions. Both defects depend
on the temperature and prevent the formation of a perfect
crystalline structure. We also observe that, as the temperature
increases, the system is able to reach a higher degree of
crystallinity. It is important to note that such a saturation
depends on atomic-scale details of the microstructure and it
cannot be predicted within the KJMA theory. We finally note
that such effects are not related to the finite size the system,
rather on the actual microstructure of the boundaries.

In order to improve the agreement of KJMA theory with
the atomistic data it is necessary to renormalize the KJMA
function. This approach will be hereafter referred to as
KJMA-N phenomenological equation. The idea is to normal-
ize both the crystallized volume and the extended one by the
same asymptotic crystalline ratio ��. Such a quantity is un-
known a priori, but it is used as a disposable parameter to be
fit on of the atomistic data. The results are reported in Fig. 5.
The KJMA-N phenomenological equation describes accu-
rately the atomistic data for any crystallinity, providing dif-
ferent exponents than standard KJMA theory �see Fig. 2�.
This proves that the exponents calculated from KJMA-N are
not the growth exponents of the isolated grain, unless we
limit the fit to the initial annealing time when the grains are
isolated. By using the KJMA-N for a global fit it is found an
overall agreement at all the temperatures considered, but a
small overestimation of the exponents.

V. CONCLUSIONS

In conclusion, we have studied the growth of both an
isolated and a distribution of cylindrical grains embedded
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into an amorphous Si matrix. We proved that the growth of
an isolated grain can be described by a power-law model and
we have fully characterized the dependence of the radius
evolution both on time and temperature. Furthermore, we
studied the case of a distribution of grains and we have fo-
cused on the case of site-saturated crystallization. By com-
paring the results with the case of an isolated grain, we found
that the KJMA theory is unable to reproduce accurately the
crystallinity dependence upon time. Such deviations are due
to the fact that the atomistic model of crystallization includes
features that are out of reach of the KJMA theory �as, for
example, anisotropic grain growth or finite-size effects�. In
order to reconcile the atomistic results with the continuum
KJMA theory, we use an improved KJMA-N function where
the asymptotic crystallinity is normalized to the actual value
obtained from atomistic simulations. Finally, the atomistic
data prove that the asymptotic crystallinity increases with the
annealing temperature.
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APPENDIX

In order to find the T dependence of R�t ,T� �Eq. �16��, we
need to estimate the functions gac�T�, M�T�, ��T�, and R0�T�.
The T dependence of q�T� is reproduced by the fitting curve

q�T� = q1 + q2�1

2
+

1

�
arctan
q3� T

T�
− 1��� , �A1�

where q1=0.0841, q2=1.49, q3=16.34, and T��Tma were
adjusted to reproduce the atomistic data. The model corre-
sponds to the curve of Fig. 2 and it was chosen as a proto-
type of a smooth step function.

As far as the free energy gac�T�, we used the experimental
data of Grimaldi et al.31 In order to compare experiments and
simulations, we rescaled all the temperatures by the amor-
phous melting temperature Tma. Such a procedure is legiti-
mate since the ratio Tmc /Tma=1.16 is very accurately repro-
duced by the EDIP potential. At variance, it is found that the
EDIP value for Tma �Tmc� is 1250 K �1450 K�, smaller than
the experimental value 1470 K �1693 K�. At temperatures in
the range T�Tma the free energy was found to decrease �ap-
proximately� linearly with the temperature. At T0=600 K it
is found gac�T0�=g0�0.11 eV /atom while gac�Tma�
=gma�0.09 eV /atom at Tma. Accordingly we get

gac�T� = g0 +
gma − g0

Tma − T0 �Tma − T� T0 � T � Tma. �A2�

At temperatures T�Tma, the liquid phase is thermodynami-
cally more stable than the amorphous phase. Accordingly, the
free-energy curve gac to be considered in Eq. �16� is the
difference between the liquid and the crystal phase. Also in

this case the dependence on the temperature is linear and it
may be modeled by

gac�T� = gma −
gma

Tmc − Tma
�Tma − T� Tma � T � Tmc.

�A3�

Equations �A2� and �A3� give the overall temperature depen-
dence of gac�T�.

The boundary mobility M�T� is computed by assuming a
single activation energy Ea, i.e.,

M�T� = �e−Ea/kBT/kBT . �A4�

It is possible to fit our data with an activation energy
Ea�2.6 eV close to the experimental value 2.7 eV.29 The
prefactor � was found to be �1.8�109 nm3 ns−1. The cal-
culated mobility and the analytical fit are reported in Fig. 6
as a function of the temperature. We observe that the calcu-
lated boundary mobility M�T� is a few orders of magnitude
larger than the experimental data.32 This discrepancy is not a
consequence of the method used to calculate M in the
present analysis. Rather, such an overestimation is found also
when studying the crystallization of a planar interface25

�solid phase epitaxy �SPE�� and it is a common feature of the
available model potentials for SPE in silicon.32 The choice of
the EDIP potential is legitimate and favorable because it
makes a fast crystallization affordable.

The quantity R0 appearing in Eq. �16� is the initial grain
radius for an annealing at a fixed temperature. As explained
in Sec. II, R0 depends on the annealing temperature T. In the
range 1000 K�T�1400 K the function R0�T� is

R0�T� =
R1

1 + eR3�R2−T� , �A5�

where R1=2.728 nm, R2=1419 K, and R3=0.034 K−1 �see
Fig. 6�.

Finally, let us consider the temperature dependence of
��T� which is the length scale controlling the nonuniform
growth of Eq. �16�. Such a quantity is related to the faceting
of the grain. For a given temperature and a given growth
exponent, a larger � gives a larger velocity and a
stronger nonuniform character of the growth. ��T� is a non-
monotonic function of the temperature in the range
1000�T�1400 K where it is found 8 nm���25 nm
�see Fig. 6�. We found

��T� = �0 + �1e−�T/� − ��2
�A6�

where �0=8.515 nm, �1=12.36 nm, �=53.28 K, and
�=24.14. ��T� is found to have a peak close to the amor-
phous melting temperature Tma where q→1. This reminds a
divergence at the transition temperature �see Fig. 6�.

The set of functions �q�T� ,M�T� ,gac�T� ,��T�	 described
above gives the temperature dependence of the frequency
��T� appearing in Eq. �16�. We found 8�10−3 ns−1��
�0.5 ns−1. By combining ��T� and R0�T� the dependence
on time and temperature of the grain radius is given and it is
able to model the whole set of calculated atomistic data.
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